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Application of a Quantum Action Principle
to a Quantum Oscillator
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A quantum action principle is presented and discussed. These ideas are then applied to
a specific physical example, the effect produced by an oscillator on another physical
system.

1. INTRODUCTION

In physical applications, one is often interested not in individual transition
probabilities, but rather in expectation values of a physical property for a specified
initial state, or mixture of states. The intention here is to consider, as an extended
example, one such problem, and in the process, exhibit the use of a particular quan-
tum action principle that has been briefly introduced by Schwinger (1960, 1962,
1970).

To begin with, as an extension of Hamilton’s principle in classical mechanics,
suppose the action functional for a given system isS[C]. Then the dynamical path
followed by the system in configuration space is that path about which general
variations produce only end point contributions to1S,

1S[C] = 1
∫ t2

t1

L(qs(t), q̇s(t), t) dt =
[∑

s

ps1qs − H1t

]t2

t1

,

whereps and−H in1Sare said to be conjugate to the variablesqs andt , respec-
tively (Sudarshan and Mukunda, 1974).

Thus, the variation1S in the action receives contributions only from the end
points of the trajectoryC, and these contributions can be expressed in terms of
the total variations1qs, and1t . This also leads directly to Hamilton’s differential
equations in the classical regime.
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The quantum version of this action principle avoids the use of functional
integration because it does not directly deal with the matrix element〈2 | 1〉but with
δ〈2 | 1〉, where the variations can be real or virtual. In this respect, the Schwinger
principle, as it is sometimes referred to, is analogous to and based on classical
variational principles, and leads to differential equations rather than to the solutions
of these equations.

Schwinger (1970) defines an operatorδW12 in the following way,

δ〈2 | 1〉 = i

h
〈2|δW12|1〉,

and for the moment, we write the quantum numbers of the states in this way. This
satisfies the following additivity property

δW31 = δW32+ δW21.

From this, it follows that the additional propertiesδW11 = 0 andδW12 = −δW21

hold. Using these basic properties, it follows that

i

h
〈1|δW12|2〉 = δ〈1 | 2〉 = δ〈2 | 1〉∗ = − i

h
〈2|δW21|1〉∗ = i

h
〈2|δW12|1〉∗,

that is

〈1|δW12|2〉 = 〈2|δW21|1〉∗,
and is Hermitian. In these terms, one can generate a dynamical postulate. There
exists a special class of deformations for which the associated operatorsδW12 are
obtained by appropriate variation of a single operator, the action operator.

We would now like to apply this to another elementary physical example
which was not treated in Bracken (1997), but has been introduced in Schwinger
(1961). In the process, it will be shown that one can write down an action principle
technique that is adapted to the physical question which concerns the calculation
of the expectation values of a physical property for a specified initial state and not
individual transition probabilities

〈X(t2)〉b′t1 =
∑
a′a′′
〈b′t1 | a′t2〉〈a′t2|X|a′′t2〉〈a′′t2 | b′t1〉,

or more generally, a mixture of states.
The action principle asserts that

δ〈a′t2 | b′t1〉 = i

h

〈
a′t2

∣∣∣∣δ ∫ t2

t1

dt L

∣∣∣∣b′t1〉 ,

in which we taket2 > t1. This particular form may be thought of as corresponding
to the point of view in which states at different times can be compared by progress-
ing forward from earlier time. The complex conjugate form would correspond to
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progressing from the later time

δ〈b′t1 | a′t2〉 = − i

h

〈
b′t1

∣∣∣∣δ ∫ t2

t1

dt L

∣∣∣∣a′t2〉 .
Suppose that one can imagine that the two different senses of time can be thought of
as being determined by different dynamics. The transformation function analogous
to those above would correspond for the closed path to the action principle,

δ〈t1 | t1〉 = i

h

〈
t1

∣∣∣∣δ [∫ t2

t1

dt L+ −
∫ t2

t1

dt L−

]∣∣∣∣ t1〉 .
2. FORMULATION OF THE EXAMPLE

Consider an oscillator subjected to an arbitrary external force, described by
the Lagrangian operator

L = iy†
(
∂y

∂t

)
− ωy†y− y†K (t)− yK∗(t). (1)

The complementary pair of non-Hermitian operatorsy, iy† are constructed from
Hermitianq, p by using the definitions,

y = 2−1/2(q + i p), iy† = 2−1/2(p+ iq). (2)

The equations of motion implied by the action principle are

i

(
dy

dt

)
− ωy = K , −i

(
dy†

dt

)
− ωy† = K ∗. (3)

Solutions are given by

y(t) = e−iω(t−t2)y(t2)− i
∫ t

t2

dt′ e−iω(t−t ′)K (t ′), (4)

as well as its adjoint equation. Differentiating (4) with respect tot , we obtain

dy

dt
(t) = −iω e−iω(t−t2)y(t2)− ω e−iωt

∫ t

t2

dt′ eiωt ′K (t ′)− ieiωt K (t) e−iωt .

(5)

The forces that are encountered in the positive time sense are written,K+(t),
K ∗+(t) and in the reverse time directionK−(t), K ∗−(t) with t1 > t2. The integral
in these cases must be taken along the appropriate path. Suppose that timet is
reached first in the time evolution fromt2, then we must have from (4) that,

y+(t) = e−iω(t−t2)y+(t2)− i
∫ t1

t2

dt′ e−iω(t−t ′)K+(t ′), (6)
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and on the return segment

y−(t) = e−iω(t−t2)y+(t2)− i
∫ t1

t2

dt′ e−iω(t−t ′)K+(t ′)+ i
∫ t1

t
dt′ e−iω(t−t ′)K−(t ′).

Subtractingy+(t) from this, one obtains

y−(t)− y+(t) = −i

(∫ t1

t2

dt′ e−iω(t−t ′)K+(t ′)−
∫ t

t2

dt′ e−iω(t−t ′)K+(t ′)
)

+ i
∫ t1

t
dt′ e−iω(t−t ′)K−(t ′).

Substitutingt = t1 and thent = t2, one obtains that

y−(t1)− y+(t1) = 0,

y−(t2)− y+(t2) = i
∫ t1

t2

dt eiω(t−t2)(K− − K+) (t). (7)

Next, the transformation function referring to the lowest energy state of the
unperturbed oscillator can be constructed. This is characterized by

〈0t2|y†y(t2)|0t2〉 = 0,

or equivalently, by the eigenvector equations

y(t2) | 0t2〉 = 0, 〈0t2 | y†(t2) = 0.

Clearly, the transformation function equals unity ifK+ = K−, so there is no
distinction between paths. The effect of independent changes inK+ andK− and
of K ∗+ andK ∗− must be determined using the action principle

δK 〈0t2 | 0t2〉K±

= −i

〈
0t2

∣∣∣∣[ ∫ t1

t2

dt(δK ∗+y+ − δK ∗−y−)+
∫ t1

t2

dt(y†+δK+ − y†−δK−)

]∣∣∣∣0t2

〉K±
.

The choice of initial state implies effective boundary conditions that supplement
the equations of motion, thusy+(t2)→ 0, y†−(t2)→ 0. Hence,

y+(t) = −i
∫ t1

t2

dt′ e−iω(t−t ′)η+(t − t ′)K+(t), (8)
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and

y−(t) = −i
∫ t1

t2

dt′ e−iω(t−t ′)K+(t ′)+ i
∫ t1

t2

dt′ e−iω(t−t ′)η−(t − t ′)K−(t ′). (9)

There is an adjoint equation that is obtained by interchanging the± labels. The
step functionη+(t − t ′) has been introduced which is 1 ift − t ′ > 0 and 0 when
t − t ′ < 0, as well asη−(t − t ′) which is 1 if t − t ′ < 0 and 0 ift − t ′ > 0. Thus,

η+(t − t ′)+ η−(t − t ′) = 1, η+(0)= η−(0)= 1

2
.

Defining the matrices

K (t) =
(

K+(t)

K−(t)

)
, iG0(t − t ′) = e−iω(t−t ′)

(
η+(t − t ′) 0

−1 η−(t − t ′)

)
, (10)

one can calculate that,

iK∗(t)G0(t − t ′)K (t ′)

= i (K ∗+(t)K ∗−(t))

(
η+(t − t ′) 0

−1 η−(t − t ′)

)(
K+(t ′)
K−(t ′)

)
e−iω(t−t ′)

= i e−iω(t−t ′)

(
K ∗+(t)η+(t − t ′)K+(t)

−K ∗−(t)K+(t ′)+ K ∗−(t)η−(t − t ′)K−(t ′)

)
.

One can then write the solution of the integrable differential expression for
〈0t2 | 0t2〉K± in matrix form

〈0t2 | 0t2〉K± = exp

[
− i

∫ t1

t2

dt dt′ K ∗(t)G0(t − t ′)K (t ′)
]
. (11)

The second variation of this gives

−δK ∗δK 〈0t2 | 0t2〉K±|K=K ∗=0 = i
∫ t1

t2

dt dt′ δK ∗(t)G0(t − t ′) δK (t ′). (12)

The results for any initial oscillator state can be derived. To do this, consider the
impulsive forces,

K+(t) = iy′′δ(t − t2), K ∗−(t) = −iy†
′
δ(t − t2). (13)

Thus, under the influence of these forces, the states|0t2〉 and 〈0t2| become at
t2+ 0, the states|y′′t2〉 and〈y†′ t2|, which are right and left eigenvectors ofy(t2)
and y†(t2). The transformation function for the closed time path, on taking into
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account arbitrary additional forces, can be expressed as

〈y†′ t1 | y′′t2〉K± = exp

[
y†
′
y′′ − y†

′
(
− i

∫ t1

t2

dt eiω(t−t2) (K− − K+) (t)

)
+
(
− i

∫ t1

t2

dt e−iω(t−t2) (K ∗+ − K ∗−) (t)

)
y′′

− i
∫ t1

t2

dt dt′ K ∗(t)G0(t − t ′)K (t ′)
]
. (14)

Unperturbed oscillator energy states will be of interest here. These two de-
scriptions can be connected by considering the unperturbed oscillator transforma-
tion function

〈y†′ t1 | y′′t2〉 = 〈y†′ |exp[−i (t1− t2)ωy†y]|y′′〉. (15)

Differentiating this with respect tot1, one obtains that

i
∂

∂t1
〈y†′ t1 | y′′t2〉 = 〈y†′ t1|ωy†(t1)y(t1)|y′′t2〉 = ωy†

′
e−iω(t1−t2)y′′〈y†′ t1 | y′′t2〉,

(16)

since,

y(t1) = e−iω(t1−t2)y(t2).

Integrating (16), we obtain the explicit expression,

〈y†′ t1 | y′′t2〉 = exp
[
y†
′
e−iω(t1−t2)y′′

]
. (17)

The exponential can be expanded to give,

〈y†′ t1 | y′′t2〉 = exp
[
y†
′
e−iω(t1−t2)y′′

] = ∞∑
n=0

(y†
′
)n

√
n!

e−inω(t1−t2) (y′′)n

√
n!
. (18)

Suppose we are interested in the expectation values that refer to initial staten,

namely〈nt2 | nt2〉K± . The coefficient of (y†
′
y′′)n/n! must be extracted from an

exponential of the form

exp[y†
′
y′′ + y†

′
α + βy′′ + γ ] =

∑
kl

(y†
′
)k

k!

(y′′)l

l !
αkβ l exp[y†

′
y′′ + γ ]. (19)

All the terms that contribute to the matrix element are contained in the diagonal

part of the sum

∞∑
k=0

(y†
′
y′′)k

(k!)2
(αβ)k exp[y†

′
y′′ + γ ]

= 1

2π i

∫
ds

s
es exp[y†

′
y′′(1+ s−1αβ)+ γ ], (20)
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and one takes a path so that the integral is given by

1

2π i

∫
ds

sk+1
es = 1

k!
.

The calculation proceeds as follows

1

2π i

∫
ds

s
es exp[y†

′
y′′(sαβ)] = 1

2π i

∫ ∞∑
k=0

ds

sk+1
es (y†

′
y′′)k

k!
(αβ)k

=
∞∑

k=0

(y†
′
y′′)k

k!2
(αβ)k

=
∞∑

k=0

(y†
′
)k

√
k!

(y′′)k

√
k!

(αβ)k

k!
.

The quantitiesα, β, andγ are obtained by compairing with the expression for
〈y†′ t1 | y′′t2〉K± ,

1

2π i

∫
ds

s
es exp[y†

′
y′′(1+ s−1αβ)] exp(γ )

= 1

2π i

∫
ds

s
es
∑

n

(y†
′
y′′)n

n!
(1+ s−1αβ)n =

∑
n

(y†
′
y′′)

n!
Ln(−αβ).

One obtains a much nicer form, however, by considering an initial mixture
of oscillator energy states for which thenth state is assigned the probability

(1− e−βω) e−nβω. (21)

These results are recovered in this way, andβ = θ−1 can be interpreted as a
temperature. Since,

(1− e−βω)
∞∑

n=0

e−nβωLn(x)

= (1− e−βω)
1

2π i

∫
ds

s
es(1− e−βω + s−1e−βωx)−1 = exp

(
− x

eβω − 1

)
.

One obtains, suppressingθ on the matrix element,

〈t2 | t2〉K±θ = 〈t2 | t2〉K± = exp[−i
∫

dt dt′ K ∗(t)Gθ (t − t ′)K (t ′)], (22)

where,

iGθ (t − t ′) = iG0(t − t ′)+ (eβω − 1)−1G0(t − t2)+−G0(t2− t ′),

iG0(t − t2)+ = e−iω(t−t2)

(
1
−1

)
, i−G0(t2− t) = eiω(t−t2)(−1 1).
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Thus,

iGθ (t − t ′) = e−iω(t−t ′)
(
η+(t − t ′)+ 〈n〉θ −〈n〉θ
−1− 〈n〉θ η−(t − t ′)+ 〈n〉θ

)
, (23)

where we have denoted,

〈n〉θ = 1

eβω − 1
. (24)

Since the elements ofGθ are also given by unperturbed oscillator thermal expec-
tation values

iGθ (t − t ′) =
(〈(y(t)y†(t ′))+〉θ −〈y†(t ′)y(t)〉θ
−〈y(t)y†(t ′)〉θ 〈(y(t)y†(t ′))−〉θ

)
, (25)

and the notation〈n〉θ is consistent with its identification as〈y†y〉θ .
The thermal forms can also be derived directly by solving the equations of

motion, in the manner used to find〈0t2 | 0t2〉K± . On replacing the single diagonal
element

〈0t2 | 0t2〉K± = 〈0t2|U |0t2〉,
by the statistical average,

(1− e−βω)
∞∑

n=0

e−nβω〈nt2 | nt2〉K± = (1− e−βω) tr[exp(−βωy†y)U ], (26)

we find the following relation,

y−(t2) = eβωy+(t2), (27)

instead of the effective initial conditiony+(t2) = 0. This is obtained by combining

exp(−βωy†y)y exp(βωy†y) = exp(βω)y, (28)

with the property of the trace,

tr(exp(−βωy†y)yU) = tr(exp(βω)y exp(−βωy†y)U )

= tr(exp(−βωy†y)U exp(βω)y).

We also have,

y−(t2)− y+(t2) = −i
∫ t1

t2

dt eiω(t−t2)(K+ − K−) (t). (29)
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Using (27) in (29), we obtain that,

y+(t2) = − i

eβω − 1

∫ t1

t2

dt eiω(t−t2)(K+ − K−) (t).

Hence, to the previously determinedy±(t) is to be added the term

−i 〈n〉θ
∫ t1

t2

dt′ e−iω(t−t ′)(K+ − K−) (t),

and correspondingly,

〈t2 | t2〉K±θ = 〈t2 | t2〉K±0 exp

[
− 〈n〉θ

∫ t1

t2

dt dt′(K ∗+ − K ∗−) (t)

× e−iω(t−t ′)(K+ − K−)(t ′)
]
. (30)

As an easier example, let us evaluate the expectation value of the oscillator
energy at timet1 for a system that was in thermal equilibrium at timet2, and is
subsequently disturbed by an arbitrary time-varying force. This can be computed
as follows,

〈t2|ωy†y(t1)|t2〉Kθ = ω
δ

δK−(t1)

δ

δK ∗+(t1)
〈t2 | t2〉K±θ

∣∣
K+=K−,K ∗+=K ∗−

. (31)

The variation with respect toδ/δK ∗+(t1) gives the factor

−i

(∫ t1

t2

dt Gθ (t1− t ′)K (t ′)
)
+

,

The subsequent variation with respect toK−(t−) gives

−iGθ (0)+− +
(∫

dt K∗(t)Gθ (t − t1)

)
−

(∫
dt′ Gθ (t1− t ′)K (t ′)

)
+
. (32)

The required energy expectation value equals,

ω〈n〉θ + ω
∣∣∣∣ ∫ t1

t2

dt eiωt K (t)

∣∣∣∣2. (33)

More generally, the expectation values of all functions ofy(t1) andy†(t1) are
known by finding those of

exp[−i (λy†(t1)+ µy(t1))],

and this quantity is obtained on supplementingK+ andK ∗+ by the impulsive forces,

K+(t) = λδ(t − t1), K ∗+(t) = µδ(t − t1), (34)
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then,

〈t2| exp[−i (λy†(t1)+ µy(t1))]|t2〉Kθ

= exp

[
−λµ

(
〈n〉θ + 1

2

)
+ λ

∫ t1

t2

dt eiω(t1−t)K ∗(t)

−µ
∫ t1

t2

dt e−iω(t1−t)K (t)

]
, (35)

where we useη+(0)= 1/2.
If probabilities for specific oscillator energy states are of interest, we have

only to exhibit as functions ofy andy†, the projection operators for these states,
the expectation values of which are the required probabilities. The operator

Pn = |n〉〈n|,
is represented by the matrix

〈y†′ |Pn|y′′〉 = (y†
′
y′′)2n

n!
exp(−y†

′
y′′)〈y†′ | y′′〉, (36)

and therefore,

Pn = 1

n!
(y†)n

[ ∞∑
k=0

(−1)k

k!
(y†)kyk

]
yn = 1

n!
(y†)n exp(−y†; y)yn,

in which we have introduced a notation to indicate the ordered multiplication of
operators. A convenient generating function for these projection operators is

∞∑
n=0

αn Pn = exp[−(1− α)y†; y].

This can be written,

∞∑
n=0

αn Pn = exp

[
(1− α)

∂

∂λ

∂

∂µ

]
exp(−iλy†) exp(−iµy)|λ=µ=0.

Then,
∞∑

n=0

αn p(n, θ , K )

= exp

[
(1− α)

∂

∂λ

∂

∂µ

]
exp

[
− λµ〈n〉θ + λ eiωt1

∫
dt eiωt K ∗(t)

−µ e−iωt1

∫
dt eiωt K (t)

]
λ=µ=0

, (37)
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gives the probability of finding the oscillator in thenth energy state after an arbitrary
time-varying force has acted, if it was initially in a thermal mixture of states.

To evaluate the quantity,

X = exp

[
(1− α)

∂

∂λ

∂

∂µ

]
exp[−λµ〈n〉 + λγ ∗ − µγ ] |λ=µ=0,

differentiateX with respect toγ ∗, and with〈n〉 = 〈n〉θ , we have,

∂

∂γ ∗
X = exp

[
(1− α)

∂

∂λ

∂

∂µ

]
λ exp[−λµ〈n〉 + λγ ∗ − µγ ] |λ=µ=0

= (1− α) exp

[
(1− α)

∂

∂λ

∂

∂µ

]
∂

∂µ
exp[−λµ〈n〉 + λγ ∗ − µγ ] |λ=µ=0

= (1− α) exp

[
(1− α)

∂

∂λ

∂

∂µ

]
(−λ〈n〉 − γ )

× exp[−λµ〈n〉 + λγ ∗ − µγ ] |λ=µ=0.

Using the Cambell–Baker–Hausdorf formula, one has that,

exp

[
(1− α)

∂

∂λ

∂

∂µ

]
(−λ〈n〉 − γ ) exp

[
− (1− α)

∂

∂λ

∂

∂µ

]
= (−λ〈n〉 − γ )− (1− α)〈n〉 ∂

∂µ
.

Since,

(1− α) exp

[
(1− α)

∂

∂λ

∂

∂µ

]
∂

∂µ
exp[−λµ〈n〉 + λγ ∗ − µγ ] |λ=µ=0

= exp

[
(1− α)

∂

∂λ

∂

∂µ

]
λ exp[−λµ〈n〉 + λγ ∗ − µγ ] |λ=µ=0 = ∂X

∂γ ∗
,

one obtains the following differential equation inX,

∂X

∂γ ∗
= −(1− α)γ X − (1− α)〈n〉 ∂X

∂γ ∗
.

This can be rewritten in the form

∂X

∂γ ∗
= − γ (1− α)

1+ 〈n〉(1− α)
X. (38)

Solving this equation, one can write

X = X0 exp

[
− |γ |2 1− α

1− 〈n〉(1− α)

]
,
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where

X0 = 1

1+ 〈n〉(1− α)
.

Therefore, substituting〈n〉 = (eβω − 1)−1 into X0, we can write,

X0 = [1+ (eβω − 1)−1(1− α)]−1 = (1− e−βω) (1− α e−ωβ)−1.

Thus the sum (37) is given by
∞∑

n=0

αn p(n, θ , K ) = 1− e−βω

1− α e−ωβ
exp

[
− |γ |2 1− e−βω

1− α e−βω
(1− α)

]
,

where|γ |2 = | ∫ dt eiωt K (t)|2. On refering to the previously used Laguerre poly-
nomial sum formula, we obtain,

p(n, θ , K ) = (1− e−βω) e−nβω exp[−|γ |2(1− e−βω)] Ln[−4|γ |2 sinh2(βω/2)].

In addition to describing the physical situation of initial thermal equilibrium,
this also provides a generating function for the individual transition probabilities
between oscillator energy states,

∞∑
n′=0

p(n, n′, K ) e−(n′−n)βω

= exp[−|γ |2(1− e−βω)] Ln[−(1− e−βω) (eβω − 1)|γ |2].
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